If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-450=0
a = 1; b = 4; c = -450;
Δ = b2-4ac
Δ = 42-4·1·(-450)
Δ = 1816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1816}=\sqrt{4*454}=\sqrt{4}*\sqrt{454}=2\sqrt{454}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{454}}{2*1}=\frac{-4-2\sqrt{454}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{454}}{2*1}=\frac{-4+2\sqrt{454}}{2} $
| 5b2-10=0 | | 5x10=5 | | 3x(x-3)=-6x+15 | | 6x-7=10x-9 | | y4+y2=74y4+y2=74 | | V=(4/3)3.14x27 | | -×2-5x=0 | | 2x+6=-x-15 | | 7(x−2)+2=6(x−1 | | -3.1x+7-7.4x=1.5x-6(x-3/) | | c=3.5*50 | | −7x+17=−17x−18 | | 3x–5=2x | | 4x+70=3x+90 | | 13+2x=3x–11 | | 16−3p=2/3p+5 | | −8x+24=−5 | | 17–2x=31 | | 36–4x=5x | | 2(x-4)^2+8=44 | | 65=10x+25 | | 7+-1x=2x+4 | | 9x+4x+10-36=3 | | 5x–13=3x+8 | | 9x+4x+10-36/3=0 | | 5x^2+20x=-15 | | y=6×+17 | | 7x^2+12x/10=0 | | 5+3v=2-9v | | n/3-9=4 | | 5/6x-16=-6 | | (c+2)/5=15 |